> 活动 >

多边形内角和公式大全_多边形内角和公式

时间:2023-05-25 01:28:05       来源:互联网


【资料图】

1、多边形内角和定理证明证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.因为这n个三角形的内角的和等于n·180°。

2、以O为公共顶点的n个角的和是360°所以n边形的内角和是n·180°-2×180°=(n-2)·180°. 即n边形的内角和等于(n-2)×180°. 证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.因为这(n-2)个三角形的内角和都等于(n-2)·180°所以n边形的内角和是(n-2)×180°. 证法三:在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形。

3、这(n-1)个三角形的内角和等于(n-1)·180°以P为公共顶点的(n-1)个角的和是180°所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.。

本文就为大家分享到这里,希望小伙伴们会喜欢。

标签:

消息推送